IEEE Neural Systems and Rehabilitation Engineering

Syndicate content
TOC Alert for Publication# 7333
Updated: 18 weeks 2 hours ago

How are Muscle Synergies Affected by Electromyography Pre-Processing?

Sat, 03/31/2018 - 22:00
Muscle synergies have been used for decades to explain a variety of motor behaviors, both in humans and animals and, more recently, to steer rehabilitation strategies. However, many sources of variability such as factorization algorithms, criteria for dimensionality reduction and data pre-processing constitute a major obstacle to the successful comparison of the results obtained by different research groups. Starting from the canonical EMG processing we determined how variations in filter cut-off frequencies and normalization methods, commonly found in literature, affect synergy weights and inter-subject similarity (ISS) using experimental data related to a 15-muscles upper-limb reaching task. Synergy weights were not significantly altered by either normalization (maximum voluntary contraction - MVC - or maximum amplitude of the signal - SELF) or band-pass filter ([20-500 Hz] or [50-500] Hz). Normalization did, however, alter the amount of variance explained by a set of synergies, which is a criterion often used for model order selection. Comparing different low-pass (LP) filters (0.5 Hz, 4 Hz, 10 Hz, 20 Hz cut-offs) we showed that increasing the low pass filter cut-off had the effect of decreasing the variance accounted for by a set number of synergies and affected individual muscle contributions. Extreme smoothing (i.e., LP cut-off 0.5 Hz) enhanced the contrast between active and inactive muscles but had an unpredictable effect on the ISS. The results presented here constitute a further step towards a thoughtful EMG pre-processing for the extraction of muscle synergies.

Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses

Sat, 03/31/2018 - 22:00
Discrete, rapid (i.e., ballistic like) muscle activation patterns have been observed in ankle muscles (i.e., plantar flexors and dorsiflexors) of able-bodied individuals during voluntary posture control. This observation motivated us to investigate whether transtibial amputees are capable of generating such a ballistic-like activation pattern accurately using their residual ankle muscles in order to assess whether the volitional postural control of a powered ankle prosthesis using proportional myoelectric control via residual muscles could be feasible. In this paper, we asked ten transtibial amputees to generate ballistic-like activation patterns using their residual lateral gastrocnemius and residual tibialis anterior to control a computer cursor via proportional myoelectric control to hit targets positioned at 20% and 40% of maximum voluntary contraction of the corresponding residual muscle. During practice conditions, we asked amputees to hit a single target repeatedly. During testing conditions, we asked amputees to hit a random sequence of targets. We compared movement time to target and end-point accuracy. We also examined motor recruitment synchronization via time-frequency representations of residual muscle activation. The result showed that median end-point error ranged from -0.6% to 1% maximum voluntary contraction across subjects during practice, which was significantly lower compared to testing (p <; 0.001). Average movement time for all amputees was 242 ms during practice and 272 ms during testing. Motor recruitment synchronization varied across subjects, and amputees with the highest synchronization achieved the fastest movement times. End-point accuracy was independent of movement time. Results suggest that it is feasible for transtibial amputees to generate ballistic control signals using their residual muscles. Future work on volitional control of powered power ankle prostheses might consider anticipatory postural control- based on ballistic-like residual muscle activation patterns and direct continuous proportional myoelectric control.

Influence of Elbow Flexion and Stimulation Site on Neuromuscular Electrical Stimulation of the Biceps Brachii

Sat, 03/31/2018 - 22:00
Functional electrical stimulation (FES) can help individuals with physical disabilities by assisting limb movement; however, the change in muscle geometry associated with limb movement may affect the response to stimulation. The aim of this paper was to quantify the effects of elbow flexion and stimulation site on muscle torque production. Contraction torque about the elbow was measured in 12 healthy individuals using a custom elbow flexion testbed and a transcutaneous electrode array. Stimulation was delivered to six distinct sites along the biceps brachii over 11 elbow flexion angles. Flexion angle was found to significantly influence the optimal (i.e., torque-maximizing) stimulation site (χ2(10, N = 24) = 135.75, p = 3.12 × 10-24), with post hoc analysis indicating a proximal shift in optimal stimulation site with increased flexion. Similarly, the biceps stimulation site was found to significantly influence the flexion angle atwhich peaktorque occurred (χ2(5, N = 24) = 101.82,p = 2.18 × 10-20), with post hoc analysis indicating an increase in peak-torque flexion angle as stimulation site is moved proximally up the biceps. Since maximizing muscle force per unit stimulation is a common goal in rehabilitative FES, future efforts could examine methods which compensate for the shift in optimal stimulation site during FES-induced limb movement.

Toward Optimization of Gaze-Controlled Human&#x2013;Computer Interaction: Application to Hindi Virtual Keyboard for Stroke Patients

Sat, 03/31/2018 - 22:00
Virtual keyboard applications and alternative communication devices provide new means of communication to assist disabled people. To date, virtual keyboard optimization schemes based on script-specific information, along with multimodal input access facility, are limited. In this paper, we propose a novel method for optimizing the position of the displayed items for gaze-controlled tree-based menu selection systems by considering a combination of letter frequency and command selection time. The optimized graphical user interface layout has been designed for a Hindi language virtual keyboard based on a menu wherein 10 commands provide access to type 88 different characters, along with additional text editing commands. The system can be controlled in two different modes: eye-tracking alone and eye-tracking with an access soft-switch. Five different keyboard layouts have been presented and evaluated with ten healthy participants. Furthermore, the two best performing keyboard layouts have been evaluated with eye-tracking alone on ten stroke patients. The overall performance analysis demonstrated significantly superior typing performance, high usability (87% SUS score), and low workload (NASA TLX with 17 scores) for the letter frequency and time-based organization with script specific arrangement design. This paper represents the first optimized gaze-controlled Hindi virtual keyboard, which can be extended to other languages.

IEEE Transactions on Neural Systems and Rehabilitation Engineering information for authors

Sat, 03/31/2018 - 22:00
These instructions give guidelines for preparing papers for this publication. Presents information for authors publishing in this journal.

Blank page

Sat, 03/31/2018 - 22:00
This page or pages intentionally left blank.

HIVE is supported by the European Commission under the Future and Emerging Technologies program.

Syndicate content

Back to top