News aggregator

Technology-Assisted Ankle Rehabilitation Improves Balance and Gait Performance in Stroke Survivors: A Randomized Controlled Study With 1-Month Follow-Up

Many stroke survivors have limited ankle range of motion (ROM) caused by weak dorsiflexors and stiff plantarflexors. Passive ankle stretching exercises with physical therapists or a stretching board are usually recommended, but these treatments have some limitations (e.g., cost and availability of physical therapists). In this paper, we assessed the results of ankle stretching exercises delivered by a robotic ankle stretching system called motorized ankle stretcher (MAS) that we developed or by a stretching board on ankle ROM, balance control, and gait performance. The 16 stroke survivors were randomly assigned to an intervention group (IG) or a control group (CG) and participated in seven sessions of dorsiflexion stretching exercises for three-and-a-half consecutive weeks. Laboratory assessments included pre-assessment (baseline at the beginning of the first exercise session), post-assessment (at the end of the seventh exercise session), and retention assessment (one month after the seventh exercise session). All assessments included ankle ROM for the affected side, static/dynamic balance control with a sensory organization test (SOT), walking speed, walking cadence, and step length for the affected and unaffected sides. During seven sessions of ankle stretching exercises, the IG performed them using the MAS, and the CG used a stretching board. The IG significantly improved ankle ROM, SOT scores (i.e., static/dynamic balance control), walking speeds, walking cadences, and step lengths for the unaffected side after completing the seven exercise sessions of ankle stretching exercises and maintained the enhancements at the retention assessment. The CG did not significantly improve across the majority of outcome measures except for the SOT scores between the pre-assessment and retention assessment. Future work will investigate the ideal intensity, frequency, and duration of exercising with the MAS. Our research on technology-assisted ankle rehabilitation, which can as- ertain the level of persistent improvement, long-term performance retention, and carry-over effects in stroke survivors, can be used to inform future designs.

Instrumental Assessment of Stair Ascent in People With Multiple Sclerosis, Stroke, and Parkinson’s Disease: A Wearable-Sensor-Based Approach

Stair ascent is a challenging daily-life activity highly related to independence. This task is usually assessed with clinical scales suffering from partial subjectivity and limited detail in evaluating different task aspects. In this paper, we instrumented the assessment of stair ascent in people with multiple sclerosis (MS), stroke (ST), and Parkinson’s disease (PD) to analyze the validity of the proposed quantitative indexes and characterize subjects’ performances. Participants climbed 10 steps wearing a magneto-inertial sensor [magneto-inertial measurement unit (MIMU)] at sternum level. Gait pattern features (step frequency, symmetry, regularity, and harmonic ratios), and upper trunk sway were computed from MIMU signals. Clinical modified dynamic gait index (mDGI) and mDGI-Item 8 “Up stairs” were administered. Significant correlations with clinical scores were found for gait pattern features ( $text {r}_{text {s}} ge {0.536}$ ) and trunk pitch sway ( $text {r}_{textsf {s}} le -{0.367}$ ) demonstrating their validity. Instrumental indexes showed alterations in the three pathological groups compared to healthy subjects and significant differences, not clinically detected, among MS, ST, and PD. MS showed the worst performance, with alterations of all gait pattern aspects and larger trunk pitch sway. ST showed worsening in gait pattern features but not in trunk motion. PD showed fewer alterations consisting in reduced step frequency and trunk yaw sway. These results suggest that the use of an MIMU provided valid objective indexes revealing between-group differences in stair ascent not detected by clinical scales. Importantly, the indexes include upper trunk measures, usually not present in clinical tests, and provide relevant hints for tailored r- habilitation.

Restoring Natural Forearm Rotation in Transradial Osseointegrated Amputees

Osseointegrated transradial prostheses have the potential to preserve the natural range of wrist rotation, which improves the performance of activities of daily living and reduces compensatory movements that potentially lead to secondary health problems over time. This is possible by enabling the radius and the ulna bone to move with respect to each other, restoring the functionality of the original distal-radioulnar joint. In this paper, we report on psychophysics tests performed on an osseointegrated transradial amputee with the aim to understand the extent of mobility of the implants that is required to preserve the natural forearm rotation. Based on these experiments, we designed and developed an attachment device between the implants and the hand prosthesis that serves as an artificial distal radio-ulnar joint. This device was fitted on an osseointegrated transradial amputee and its functionality assessed by means of the Southampton Hand Assessment Procedure (SHAP) and the Minnesota Manual Dexterity test (MMDT). We found that the axial rotation of the implants is required to preserve forearm rotation, to distribute loads equally over the two implants (60% radius – 40% ulna), and to enable loading of the implants without unpleasant feelings for the patient. Higher function was recorded when our attachment device enabled forearm rotation: SHAP from 61 to 71, MMDT from 258s to 231s. Natural forearm rotation can be successfully restored in transradial amputees by using osseointegration and our novel mechanical attachment to the hand prosthesis.

Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines

Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among a set of task-specific controllers. A non-switching controller that supports a continuum of tasks is expected to better facilitate normative biomechanics. This paper introduces a predictive model that represents gait kinematics as a continuous function of gait cycle percentage, speed, and incline. The basis model consists of two parts: basis functions that produce kinematic trajectories over the gait cycle and task functions that smoothly alter the weight of basis functions in response to task. Kinematic data from 10 able-bodied subjects walking at 27 combinations of speed and incline generate training and validation data for this data-driven model. Convex optimization accurately fits the model to experimental data. Automated model order reduction improves predictive abilities by capturing only the most important kinematic changes due to walking tasks. Constraints on a range of motion and jerk ensure the safety and comfort of the user. This model produces a smooth continuum of trajectories over task, an impossibility for finite-state control algorithms. Random sub-sampling validation indicates that basis modeling predicts untrained kinematics more accurately than linear interpolation.

Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis

This paper presents the design and validation of a novel lower limb prosthesis called the variable stiffness foot (VSF), designed to vary its forefoot stiffness in response to user activity. The VSF is designed as a semi-active device that adjusts its stiffness once per stride during swing phases, in order to minimize size, mass, and power consumption. The forefoot keel is designed as an overhung composite beam, whose stiffness is varied by moving a support fulcrum to change the length of the overhang. Stiffness modulation is programmed in response to the gait characteristics detected through foot trajectory reconstruction based on an embedded inertial sensor. The prototype VSF has a mass of only 649 g including the battery, and a build height of 87 mm. Mechanical testing demonstrated a forefoot stiffness range of 10–32 N/mm for the prototype, a threefold range of stiffness variation. The stiffness range can be altered by changing the keel material or geometry. Actuation testing showed that the VSF can make a full-scale stiffness adjustment within three strides, and tracks moderate speed-driven variations within one swing phase. Human subjects testing demonstrated greater energy storage and return with lower stiffness settings. This capability may be useful for the modulating prosthesis energy return to better mimic human ankle function. Subjective feedback indicated clear perception by the subjects of contrasts among the stiffness settings, including interpretation of scenarios for which different settings may be beneficial. Future applications of the VSF include adapting stiffness to optimize stairs, ramps, turns, and standing.

Conceptual Design of a Fully Passive Transfemoral Prosthesis to Facilitate Energy-Efficient Gait

In this paper, we present the working principle and conceptual design toward the realization of a fully-passive transfemoral prosthesis that mimics the energetics of the natural human gait. The fundamental property of the conceptual design consists of realizing an energetic coupling between the knee and ankle joints of the mechanism. Simulation results show that the power flow of the working principle is comparable with that in human gait and a considerable amount of energy is delivered to the ankle joint for the push-off generation. An initial prototype in half scale is realized to validate the working principle. The construction of the prototype is explained together with the test setup that has been built for the evaluation. Finally, experimental results of the prosthesis prototype during walking on a treadmill show the validity of the working principle.

An Asynchronous Control Paradigm Based on Sequential Motor Imagery and Its Application in Wheelchair Navigation

In this paper, an asynchronous control paradigm based on sequential motor imagery (sMI) is proposed to enrich the control commands of a motor imagery -based brain-computer interface. We test the feasibility and report the performance of this paradigm in wheelchair navigation control. By sequentially imaging left- and right-hand movements, the subjects can complete four sMI tasks in an asynchronous mode that are then encoded to control six steering functions of a wheelchair, including moving forward, turning left, turning right, accelerating, decelerating, and stopping. Two experiments, a simulated experiment, and an online wheelchair navigation experiment, were conducted to evaluate the performance of the proposed approach in seven subjects. In summary, the subjects completed 99 of 105 experimental trials along a predefined route. The success rate was 94.2% indicating the practicality and the effectiveness of the proposed asynchronous control paradigm in wheelchair navigation control.

Design and Development of a Portable Exoskeleton for Hand Rehabilitation

Improvement in hand function to promote functional recovery is one of the major goals of stroke rehabilitation. This paper introduces a newly developed exoskeleton for hand rehabilitation with a user-centered design concept, which integrates the requirements of practical use, mechanical structure, and control system. The paper also evaluated the function with two prototypes in a local hospital. Results of functional evaluation showed that significant improvements were found in ARAT (P = 0.014), WMFT (P = 0.020), and FMA_WH (P = 0.021). Increase in the mean values of FMA_SE was observed but without significant difference (P = 0.071). The improvement in ARAT score reflects the motor recovery in hand and finger functions. The increased FMA scores suggest there is a motor improvement in the whole upper limb, and especially in the hand after the training. The product met patients’ requirements and has practical significance. It is portable, cost-effective, easy to use and supports multiple control modes to adapt to different rehabilitation phases.

Automatic Musculoskeletal and Neurological Disorder Diagnosis With Relative Joint Displacement From Human Gait

Musculoskeletal and neurological disorders are common devastating companions of ageing, leading to a reduction in quality of life and increased mortality. Gait analysis is a popular method for diagnosing these disorders. However, manually analyzing the motion data is a labor-intensive task, and the quality of the results depends on the experience of the doctors. In this paper, we propose an automatic framework for classifying musculoskeletal and neurological disorders among older people based on 3D motion data. We also propose two new features to capture the relationship between joints across frames, known as 3D Relative Joint Displacement (3DRJDP) and 6D Symmetric Relative Joint Displacement (6DSymRJDP), such that the relative movement between joints can be analyzed. To optimize the classification performance, we adapt feature selection methods to choose an optimal feature set from the raw feature input. Experimental results show that we achieve a classification accuracy of 84.29% using the proposed relative joint features, outperforming existing features that focus on the movement of individual joints. Considering the limited open motion database for gait analysis focusing on such disorders, we construct a comprehensive, openly accessible 3D full-body motion database from 45 subjects.

Simple and Fast Compensation of sEMG Interface Rotation for Robust Hand Motion Recognition

Surface electromyography (sEMG) measurements have demonstrated the potential to recognize complex hand motions. In addition, sEMG enables natural recognition without disturbing movements, and thus, can be used in various fields such as teleoperation, assistant robots, and prosthetic hands. However, sEMG signals highly depend on electrode placements due to the complex muscle structures. A shift of the electrode can lead to inconsistent signal measurement. Thus, sEMG-based recognition is not practical for applications that require long-term and repeated usage. This paper proposes compensation of sEMG interface rotation for robust motion recognition. Once the relationship between sEMG signals and motions is trained, additional training for different electrode configurations is not necessary for a band-type interface. The proposed process is simple and fast. The interface rotation can be compensated for by performing only a single motion for approximately 2 s. The single motion for compensation is dependent on the muscle properties of the user. Generally, ulnar deviation may work. To demonstrate the proposed compensation, recognition of five hand motions is conducted. The experimental results indicate that the proposed compensation can cover the overall range of rotation. In addition, the proposed compensation is validated with a transradial amputee.

Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces

Bimanual movements are an integral part of everyday activities and are often included in rehabilitation therapies. Yet, electroencephalography (EEG)-based assistive and rehabilitative brain–computer interface (BCI) systems typically rely on motor imagination (MI) of one limb at the time. In this paper, we present a classifier which discriminates between uni-and bi-manual MI. Ten able-bodied participants took part in cue-based motor execution (ME) and MI tasks of the left (L), right (R) and both (B) hands. A 32-channel EEG was recorded. Three linear discriminant analysis classifiers, based on MI of L–B, B–R, and B–L hands were created, with features based on wide band common spatial patterns (CSP) 8–30 Hz, and band specifics common spatial patterns (CSPb). Event-related desynchronization (ERD) was significantly stronger during bimanual compared to unimanual ME on both hemispheres. Bimanual MI resulted in bilateral parietally shifted ERD of similar intensity to unimanual MI. The average classification accuracy for CSP and CSPb was comparable for the L–R task (73% ± 9% and 75% ± 10%, respectively) and for the L–B task (73% ± 11% and 70% ± 9%, respectively). However, for the R–B task (67% ± 3% and 72% ± 6%, respectively), it was significantly higher for CSPb ( $p = 0.0351$ ). Six participants whose L–R classification accuracy exceeded 70% were included in an online task a week - ater, using the unmodified offline CSPb classifier, achieving 69% ± 3% and 66% ± 3% accuracy for L–R and R–B tasks, respectively. Combined uni- and bi-manual BCI could be used for restoration of motor function of highly disabled patents and for motor rehabilitation of patients with motor deficits.

Brain Activation and Gait Alteration During Cognitive and Motor Dual Task Walking in Stroke—A Functional Near-Infrared Spectroscopy Study

This paper investigated the effects of cognitive and motor dual tasks on gait performance and brain activities in stroke; 23 stroke subjects performed single walking (SW), walking while performing cognitive task (WCT), and walking while performing motor task (WMT) at self-selected speed. The gait performance was recorded, including speed, cadence, stride time, stride length, and dual task cost (DTC). Brain activities in prefrontal cortex, premotor cortex (PMC), and supplementary motor areas (SMAs) were measured by functional near-infrared spectroscopy during walking. Results showed significant decrease in speed, cadence, and stride length, and increase in stride time was noted in both WCT and WMT compared with SW condition. There was no significant difference in DTC between WCT and WMT. The non-lesioned SMA and most channels of bilateral PMCs exhibited significant increases in the index of hemoglobin differential during WCT and WMT compared with SW. Moreover, gait performance was negatively correlated with bilateral PMCs and lesioned SMA during different walking tasks. In conclusion, deteriorated gait performance was noted in stroke attempting dual tasks. There is no significant difference between the two dual tasks on gait performance. Nevertheless, SMA and especially PMC were crucial in cognitive and motor dual task walking after stroke.

Correction for “Unbiased Estimation of Human Joint Intrinsic Mechanical Properties During Movement”

In [1], a typographical error occurred in the running head. The name Guarina should have appeared as Guarin.

IEEE Transactions on Neural Systems and Rehabilitation Engineering information for authors

These instructions give guidelines for preparing papers for this publication. Presents information for authors publishing in this journal.

Autonomous exoskeleton reduces metabolic cost of human walking

JNER - Mon, 11/03/2014 - 00:00
Background: Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions.FindingsThe metabolic energy consumption of seven study participants (85 +/- 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 +/- 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 +/- 4 W, which was an improvement of 10 +/- 3% (p =0.023) relative to the control condition of not wearing the exoskeleton. Conclusions: The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.

Chronic stroke patients show early and robust improvements in muscle and functional performance in response to eccentric-overload flywheel resistance training: a pilot study

JNER - Thu, 10/30/2014 - 00:00
Background: Resistance exercise comprising eccentric (ECC) muscle actions enhances muscle strength and function to aid stroke patients in conducting daily tasks. The purpose of this study was to assess the efficacy of a novel ECC-overload flywheel resistance exercise paradigm to induce muscle and functional performance adaptations in chronic stroke patients. Methods: Twelve patients (~8 years after stroke onset) performed 4 sets of 7 coupled concentric (CON) and ECC actions using the affected limb on a flywheel leg press (LP) device twice weekly for 8 weeks. Maximal CON and ECC isokinetic torque at 30, 60 and 90[degree sign]/s, isometric knee extension and LP force, and CON and ECC peak power in LP were measured before and after training. Balance (Berg Balance Scale, BBS), gait (6-Min Walk test, 6MWT; Timed-Up-and-Go, TUG), functional performance (30-s Chair-Stand Test, 30CST), spasticity (Modified Ashworth Scale) and perceived participation (Stroke Impact Scale, SIS) were also determined. Results: CON and ECC peak power increased in both the trained affected (34 and 44%; P < 0.01), and the untrained, non-affected leg (25 and 34%; P < 0.02). Power gains were greater (P = 0.008) for ECC than CON actions. ECC isokinetic torque at 60 and 90[degree sign]/s increased in the affected leg (P < 0.04). The increase in isometric LP force for the trained, affected leg across tests ranged 10-20% (P < 0.05). BBS (P = 0.004), TUG (P = 0.018), 30CST (P = 0.024) and SIS (P = 0.058) scores improved after training. 6MWT and spasticity remained unchanged. Conclusions: This novel, short-term ECC-overload flywheel RE training regime emerges as a valid, safe and viable method to improve muscle function, balance, gait and functional performance in men and women suffering from chronic stroke.

Age-related cognitive task effects on gait characteristics: do different working memory components make a difference?

JNER - Mon, 10/27/2014 - 00:00
Background: Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Methods: Three cognitive tasks (i.e. ‘Random Digit Generation’, ‘Brooks’ Spatial Memory’, and ‘Counting Backward’) involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Results: Application of the concurrent Brooks’ Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks’ Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks’ Spatial Memory task led to significantly larger step width variability only among older adults. Conclusion: These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks’ Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.

Changes in activation timing of knee and ankle extensors during gait are related to changes in heteronymous spinal pathways after stroke

JNER - Fri, 10/24/2014 - 00:00
Background: Extensor synergy is often observed in the paretic leg of stroke patients. Extensor synergy consists of an abnormal stereotyped co-activation of the leg extensors as patients attempt to move. As a component of this synergy, the simultaneous activation of knee and ankle extensors in the paretic leg during stance often affects gait pattern after stroke. The mechanisms involved in extensor synergy are still unclear. The first objective of this study is to compare the co-activation of knee and ankle extensors during the stance phase of gait between stroke and healthy individuals. The second objective is to explore whether this co-activation is related to changes in heteronymous spinal modulations between quadriceps and soleus muscles on the paretic side in post-stroke individuals. Methods: Thirteen stroke patients and ten healthy individuals participated in gait and heteronymous spinal modulation evaluations. Co-activation was measured using peak EMG activation intervals (PAI) and co-activation amplitude indexes (CAI) between knee and ankle extensors during the stance phase of gait in both groups. The evaluation of heteronymous spinal modulations was performed on the paretic leg in stroke participants and on one leg in healthy participants. This evaluation involved assessing the early facilitation and later inhibition of soleus voluntary EMG induced by femoral nerve stimulation. Results: All PAI were lower and most CAI were higher on the paretic side of stroke participants compared with the co-activation indexes among control participants. CAI and PAI were moderately correlated with increased heteronymous facilitation of soleus on the paretic side in stroke individuals. Conclusions: Increased co-activation of knee and ankle extensors during gait is related to changes in intersegmental facilitative pathways linking quadriceps to soleus on the paretic side in stroke individuals. Malfunction of intersegmental pathways could contribute to abnormal timing of leg extensors during the stance phase of gait in hemiparetic individuals.

Analysis of relative displacement between the HX wearable robotic exoskeleton and the user¿s hand

JNER - Sat, 10/18/2014 - 00:00
Background: Advances in technology are allowing for the production of several viable wearable robotic devices to assist with activities of daily living and with rehabilitation. One of the most pressing limitations to user satisfaction is the lack of consistency in motion between the user and the robotic device. The displacement between the robot and the body segment may not correspond because of differences in skin and tissue compliance, mechanical backlash, and/or incorrect fit.FindingsThis report presents the results of an analysis of relative displacement between the user’s hand and a wearable exoskeleton, the HX. HX has been designed to maximize comfort, wearability and user safety, exploiting chains with multiple degrees-of-freedom with a modular architecture. These appealing features may introduce several uncertainties in the kinematic performances, especially when considering the anthropometry, morphology and degree of mobility of the human hand. The small relative displacements between the hand and the exoskeleton were measured with a video-based motion capture system, while the user executed several different grips in different exoskeleton modes. Conclusions: The analysis furnished quantitative results about the device performance, differentiated among device modules and test conditions. In general, the global relative displacement for the distal part of the device was in the range 0.5–1.5 mm, while within 3 mm (worse but still acceptable) for displacements nearest to the hand dorsum. Conclusions over the HX design principles have been drawn, as well as guidelines for future developments.

Lower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individuals

JNER - Fri, 10/17/2014 - 00:00
Background: A better understanding of lower-extremity muscles’ activation patterns and joint kinematics during different workloads could help rehabilitation professionals with prescribing more effective exercise regimen for elderly and those with compromised muscles. We examined the relative contribution, as well as activation and co-activation patterns, of lower-extremity muscles during semi-reclined cycling at different workloads during a constant cadence. Methods: Fifteen healthy novice cyclists participated at three 90-second cycling trials with randomly assigned workloads of 0, 50, and 100 W, at a constant cadence of 60 rpm. During all trials, electromyograms were recorded from four lower-extremity muscles: rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius medialis (GT). Joint kinematics were also recorded and synchronized with the EMG data. Muscle burst onset, offset, duration of activity, peak magnitude, and peak timing, as well as mean joint angles and mean ranges of motion were extracted from the recorded data and compared across workloads. Results: As workload increased, BF and TA displayed earlier activations and delayed deactivations in each cycle that resulted in a significantly (p < 0.05) longer duration of activity at higher workloads. RF showed a significantly longer duration of activity between 0 and 50 W as well as 0 and 100 W (p < 0.05); however, the activity duration of GT was not appeared to be affected significantly by workload. EMG peak-magnitude of RF, BF, and TA changed significantly (p < 0.05) as workload increased, but no changes were observed in the EMG peak-timing across workloads. Durations of co-activation in the RF-BF pair as well as the RF-TA pair increased significantly with workload, while the RF-TA and TA-GT pairs were only significantly different (p < 0.05) between the 0 and 100 W workload levels. Increased workload did not lead to any significant changes in the joint kinematics. Conclusions: Muscles’ activity patterns as well as co-activation patterns are significantly affected by changes in cycling workloads in healthy individuals. These variations should be considered during cycling, especially in the elderly and those with compromised musculoskeletal systems. Future research should evaluate such changes specific to these populations.

HIVE is supported by the European Commission under the Future and Emerging Technologies program.

Syndicate content
Syndicate content

Back to top