News aggregator

Rasch analysis of the London Handicap Scale in stroke patients: a cross-sectional study

JNER - Thu, 07/31/2014 - 00:00
Background: Although activity and participation are the target domains in stroke rehabilitation interventions, there is insufficient evidence available regarding the validity of participation measurement. The purpose of this study was to investigate the psychometric properties of the London Handicap Scale in community-dwelling stroke patients, using Rasch analysis. Methods: Participants were 170 community-dwelling stroke survivors. The data were analyzed using Winsteps (version 3.62) with the Rasch model to determine the unidimensionality of item fit, the distribution of item difficulty, and the reliability and suitability of the rating process for the London Handicap Scale. Results: Data of 16 participants did not fit the Rasch model and there were no misfitting items. The person separation value was 2.42, and the reliability was .85; furthermore, the rating process for the London Handicap Scale was found to be suitable for use with stroke patients. Conclusions: This was the first trial to investigate the psychometric properties of the London Handicap Scale using Rasch analysis; the results supported the suitability of this scale for use with stroke patients.

Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects

JNER - Wed, 07/30/2014 - 00:00
Background: Hand synergies have been extensively studied over the last few decades. Objectives of such research are numerous. In neuroscience, the aim is to improve the understanding of motor control and its ability to reduce the control dimensionality. In applied research fields like robotics the aim is to build biomimetic hand structures, or in prosthetics to design more performant underactuated replacement hands. Nevertheless, most of the synergy schemes identified to this day have been obtained from grasping experiments performed with one single (generally dominant) hand to objects placed in a given position and orientation in space. Aiming at identifying more generic synergies, we conducted similar experiments on postural synergy identification during bimanual manipulation of various objects in order to avoid the factors due to the extrinsic spatial position of the objects. Methods: Ten healthy naive subjects were asked to perform a selected "grasp-give-receive" task with both hands using 9 objects. Subjects were wearing Cyberglove c on both hands, allowing a measurement of the joint posture (15 degrees of freedom) of each hand. Postural synergies were then evaluated through Principal Component Analysis (PCA). Matches between the identified Principal Components and the human hand joints were analyzed thanks to the correlation matrix. Finally, statistical analysis was performed on the data in order to evaluate the effect of some specific variables on the hand synergies : object shape, hand side (i.e., laterality) and role (giving or receiving hand). Results: Results on PCs are consistent with previous literature showing that a few principal components might be sufficient to describe a large variety of different grasps. Nevertheless some simple and strong correlations between PCs and clearly identified sets of hand joints were obtained in this study. In addition, these groupings of DoF corresponds to well-defined anatomo-functional finger joints according to muscle groups. Moreover, despite our protocol encouraging symmetric grasping, some right-left side differences were observed. Conclusion: The set of identified synergies presented here should be more representative of hand synergies in general since they are based on both hands motion. Preliminary results, that should be deepened, also highlight the influence of hand dominance and side. Thanks to their strong correlation with anatomofunctional joints, these synergies could therefore be used to design underactuated robotics hands.

Primary and submovement control of aiming in C6 tetraplegics following posterior deltoid transfer

JNER - Wed, 07/23/2014 - 00:00
Background: Upper limb motor control in fast, goal-directed aiming is altered in tetraplegics following posterior-deltoid musculotendinous transfer. Specifically, movements have similar end-point accuracy but longer duration and lower peak velocity than those of age-matched, neurotypical controls. Here, we examine in detail the interplay between primary movement and submovement phases in five C6 tetraplegic and five control participants. Methods: Aiming movements were performed in two directions (20 cm away or toward), with or without vision. Trials that contained a submovement phase (i.e., discontinuity in velocity, acceleration or jerk) were identified. Discrete kinematic variables were then extracted on the primary and submovements phases. Results: The presence of submovements did not differ between the tetraplegic (68%) and control (57%) groups, and almost all submovements resulted from acceleration and jerk discontinuities. Tetraplegics tended to make a smaller amplitude primary movement, which had lower peak velocity and greater spatial variability at peak velocity. This was followed by a larger amplitude and longer duration secondary submovement. Peak velocity of primary movement was not related to submovement incidence. Together, the primary and submovement phases of both groups were equally effective in reducing end-point error. Conclusions: C6 tetraplegic participants exhibit some subtle differences in measures of motor behaviour compared to control participants, but importantly feedforward and feedback processes work effectively in combination to achieve accurate goal-directed aiming.

HIVE is supported by the European Commission under the Future and Emerging Technologies program.

Syndicate content
Syndicate content

Back to top